
Version 2.1 January 2021 Gwyn Griffiths gwyn@autonomousanalytics.com

 - 1 -

WsprDaemon Timescale Databases Notes
Commands in this guide are shown in red in Courier font, and responses in blue. The author
welcomes comments and corrections.

Over late summer and into fall 2020 Rob Robinett AI6VN made significant personal investments
in hardware to run the WsprDaemon Timescale database. In addition, Rob implemented a fast
and secure API interface to obtain spot data from wsprnet.org. Data from wsprnet.org are now in
a new Timescale database, with new data fields and some changes to existing field names. Please
use this new guide and not V1 that refers to a legacy system.
This latest version of the Guide adds new Annexes on using the WsprDaemon databases with the
R programming language, on a Big Data approach using Spark and other frameworks, and on
Clickhouse. There are some minor updates to other sections.
Check the WsprDaemon groups.io page at https://groups.io/g/WsprDaemon for news.

1. Introduction and Overview ... 2	
1.1 WsprDaemon Data Architecture ... 2	
1.2 Paths and methods for accessing data from WsprDaemon servers 4	
1.3 Installing PostgreSQL on your local computer ... 6	
1.4 Gaining access .. 7	

2. WsprDaemon database navigation .. 7	
3. Querying spots from the WsprDaemon wsprnet database .. 8	

3.1 Export query output to a file ... 8	
3.2 Wildcards .. 9	
3.3 Mathematical operations ... 9	
3.4 Simple statistics and how to specify a time interval ... 10	
3.5 Query on the azimuth angle at the receiver. ... 10	
3.6 Query on the vertex latitude .. 11	
3.7 Select only spot lines with distinct field entries .. 11	
3.8 Using subqueries: Order by a different column .. 11	
3.9 Use of Joins ... 11	

4. Queries from tutorial database: wsprdaemon_spots, wspraemon_noise and kp 12	
4.1 Table wsprdaemon_spots .. 12	
4.2 Table wsprdaemon_noise .. 13	

Annex A. Description of data within columns of tables in wsprnet and tutorial 15	
Annex B. Accessing the WsprDaemon database using node.js .. 20	
Annex C. Bash script to read basic spot data from database wsprnet table spots 21	
Annex D. Skeleton of a Python script to read the WsprDaemon wsprnet database 22	
Annex E. KNIME example ... 24	
Annex F. Octave route .. 26	
Annex G. The briefest of introductions to using WsprDaemon with R 30	
Annex H. A 'Big Data' approach to using data from the WsprDeamon databases 35	
Annex I. A column-oriented database approach - Clickhouse ... 37	
Annex J. Links to postgreSQL APIs or notes for other languages/systems 41	

Version 2.1 January 2021 Gwyn Griffiths gwyn@autonomousanalytics.com

 - 2 -

1. Introduction and Overview

1.1 WsprDaemon Data Architecture
An overview of the WsprDaemon Timescale1 databases is shown in Figure 1.1. Despite this
complexity there are straightforward routes for all types of users to gain access to the data using
the methods outlined in this Guide.

Figure 1.1 A simplified overview block diagram of the WsprDaemon data architecture.

The key points to note are:
1. The WsprDaemon data architecture currently comprises two databases, namely:

a. wsprnet - with a data acquisition route represented in the diagram by the purple blocks
- where WSPR spots forwarded by the global community of reporters to wsprnet.org are
copied to our Timescale installation via an API every two minutes.

b. tutorial - with a data acquisition route represented in the diagram by the cyan blocks -
that accepts data from users running WsprDaemon2 software to acquire their WSPR
spots and report local noise.

2. In this guide we use postgreSQL terminology, and so, each database contains one or more
tables, a full explanation of the data in each column is in Annex A, in summary:
a. Database wsprnet contains a single table - spots - whose columns are shown in Table

1.1.

1 Timescale (https://www.timescale.com/) provides extensions to the well-established postgreSQL open
source database (https://www.postgresql.org/) to handle time series data efficiently.
2 See https://github.com/rrobinett/wsprdaemon on how to obtain the software

Version 2.1 January 2021 Gwyn Griffiths gwyn@autonomousanalytics.com

 - 3 -

Column | Type
-------------+-----------------------------+
wd_time | timestamp without time zone
Spotnum | bigint
Date | integer
Reporter | text
ReporterGrid | character(6)
dB | smallint
MHz | double precision
CallSign | text
Grid | character(6) N
Power | smallint
Drift | smallint
distance | smallint
azimuth | smallint
Band | smallint
version | character(10)
code | smallint
wd_band | text
wd_c2_noise | real
wd_rms_noise | real
wd_rx_az | real
wd_rx_lat | real
wd_rx_lon | real
wd_tx_az | real
wd_tx_lat | real
wd_tx_lon | real
wd_v_lat | real
wd_v_lon | real

Table 1.1 Column names and types for the table spots in database wsprnet

b. Database tutorial currently contains three tables: kp, wsprdaemon_noise and
wsprdaemon_spots.
kp, a geomagnetic disturbance index at three-hourly intervals, is scraped each day from
NOAA's Space Weather Prediction Center. The column names and types are listed in
Table 1.2. The mid-latitude index, kp_mid, is from Fredericksburg, Virginia, and
kp_high from College, Alaska.

 Column | Type
--------------+----------------------------
 time | timestamp without time zone
 kp_mid | integer
 kp_high | integer
 kp_planetary | integer

Table 1.2 Column names and types for the table kp in database tutorial

wsprdaemon_noise: Users of WsprDaemon software, particularly those using
KiwiSDRs, have the option of uploading estimates of local noise obtained at the same
time and in the same frequency band as the decoded WSPR transmissions3. The column
names and types are listed in Table 1.3, with full details in Annex A.

3 Details of the noise estimation algorithms and examples in use are available in: Griffiths, G., Robinett,
R. and Elmore, G., 2020. Estimating LF-HF band noise while acquiring WSPR spots. QEX, September-
October 2020 and also in a detailed report available on ResearchGate.net.

Version 2.1 January 2021 Gwyn Griffiths gwyn@autonomousanalytics.com

 - 4 -

Column | Type
-----------+-----------------------------
 time | timestamp without time zone
 site | text
 receiver | text
 rx_grid | text
 band | text
 rms_level | double precision
 c2_level | double precision
 ov | integer

Table 1.3 Column names and types for the table wsprdaemon_noise

wsprdaemon_spots:
WsprDaemon access additional data fields within WSJT-X's wsprd decoder, fields that
are not uploaded to wsprnet.org, but are included in this table in case they may be of
interest to some in the WSPR community, see Annex A for a full description

 Column | Type
---------------+--------------------------------
 time | timestamp without time zone
 band | text
 rx_grid | text
 rx_id | text
 tx_call | text
 tx_grid | text
 SNR | double precision
 c2_noise | double precision
 drift | double precision
 freq | double precision
 km | double precision
 rx_az | double precision
 rx_lat | double precision
 rx_lon | double precision
 tx_az | double precision
 tx_dBm | double precision
 tx_lat | double precision
 tx_lon | double precision
 v_lat | double precision
 v_lon | double precision
 sync_quality | integer
 dt | double precision
 decode_cycles | integer
 jitter | integer
 rms_noise | double precision
 blocksize | integer
 metric | integer
 osd_decode | integer
 receiver | character varying
 nhardmin | integer
 ipass | integer

Table 1.4 Column names and types for the table wsprdaemon_spots

1.2 Paths and methods for accessing data from WsprDaemon servers
Read access to the WsprDaemon wsprnet database table spots, takes four main forms:

Version 2.1 January 2021 Gwyn Griffiths gwyn@autonomousanalytics.com

 - 5 -

1. Using an App from a third-party developer, where most of the intricacies are hidden
from view. These Apps provide the basic search functionality found on wsprnet.org and
added graphs and tables. Currently two Apps access our wsprnet spots table:

a. wsprd.vk7jj.com. As well as simple queries, Phil Barnard provides a form-filling
advanced query option to use our postgreSQL interface, Figure 1.2.
The time taken for each query is shown, and a running average; on 10 November
2020 the average response time over 1654 queries was 0.7 seconds.

Figure 1.2 Screen shot of the advanced search panel at wsprd.vk7jj.com

b. wsprwatch, Figure 1.3, is an iOS App by Peter Marks, VK2TPM, available at
https://apps.apple.com/us/app/wspr-watch/id532487317

Figure 1.3 Screen shot of WSPRwatch, an iOS app from Peter Marks, VK2TPM

Version 2.1 January 2021 Gwyn Griffiths gwyn@autonomousanalytics.com

 - 6 -

2. Using Grafana4, a powerful graphing package with built-in connections to postgreSQL
databases. We have a selection of Grafana Dashboards on the WsprDaemon server at
logs2.wsprdaemon.org:3000 where you are welcome to use the guest userid Open and
password Open. A full Guide to using Grafana with WsprDaemon data is available via
the WsprDaemon website5.

3. Using node.js - this is the method used by Phil Barnard, VK7JJ, to access the data, and
he has kindly provided details in Annex B as it is clear that others are interested in this
route. Questions should be directed to Phil at phil 'at' perite.com.

4. Using psql - a command line tool to work with a postgreSQL database. Two modes are
available:

a. Batch command line: This mode is useful in, among other applications, bash
scripts. Care is needed to get the quotes syntax right when calling for column
names with upper case letters and especially if mixed with single quotes needed
with character or text data values. A simple example of a bash script used by Jim
Lill, WA2ZKD is shown in Annex C.

b. Interactive mode: The rest of this guide concentrates on psql in interactive
mode, but in doing so, provides a rich set of postgreSQL examples that can be
used with node.js, Grafana, or any other method for accessing the data where
SQL is used.

There are also routes for access that enable data analysis packages to use our databases, for
example:

1. Python and subsequently matplotlib, Annex D shows a skeleton Python script for
accessing our databases and obtaining data.

2. KNIME6, an "end to end data science" software package where the programmer builds a
system by interconnecting diagrams representing pre-built modules, has a postgreSQL
connector node7 that does work with the WsprDaemon databases. With a wide range of
third-party modules KNIME is a powerful option for data exploration and presentation. A
trivial example is shown in Annex E.

3. OCTAVE is a well-established and widely used scientific and engineering data analysis
package. PostgreSQL8 is the only database system it currently connects to directly. The
untested route is outlined in Annex F.

1.3 Installing PostgreSQL on your local computer
Note: If you already have an SQL program installed, e.g. SQLite or MySQL there may be an
issue when it comes to installing PostgreSQL - unfortunately these problems may only come to
light as an installation is attempted.
The notes in this section are for a Raspberry Pi, for installation on other operating systems see
https://www.postgresql.org/download/ a reminder, command line inputs are in red.
sudo apt install postgresql libpq-dev postgresql-client postgresql-client-
common -y and write to

4 See https://grafana.com/
5 See http://wsprdaemon.org/grafana.html
6 See https://www.knime.com/
7hub.knime.com/knime/extensions/org.knime.features.database/latest/org.knime.database.extension.postg
res.node.connector.PostgreSQLDBConnectorNodeFactory
8 See https://octave.sourceforge.io/database/index.html

Version 2.1 January 2021 Gwyn Griffiths gwyn@autonomousanalytics.com

 - 7 -

If you intend to use Python to read from the databases on the WsprDaemon server you will need
an adapter program psycopyg2 for Python3, see Annex D for an example. You will of course
need Python 3 installed, and you may need pip3 if not already installed:
sudo apt install python3-pip
sudo pip3 install psycopg2
Note that you do not need an installation on your own machine of the Timescale DB extensions
that are used on the WsprDaemon server alongside postgreSQL. That is, unless you intend to
create your own Timescale databases.
This guide can only provide the bare essentials on using postgreSQL to query the WsprDaemon
databases. Full details on postgreSQL are available online9 and at a very useful simplified
tutorial website10.

1.4 Gaining access
We have set up a universal read-only user id: wdread with password JTWSPR2008
With postgreSQL installed on your computer you can access the database wsprnet on the
WsprDaemon server using:
psql -U wdread -d wsprnet -h logs2.wsprdaemon.org
Password for user wdread: JTWSPR2008
wsprnet=>
In this command line, the -d option connects us to Database wsprnet, which, as a reminder,
contains the single table spots with data acquired via an API from wsprnet.org. The -h option
declares the address of the WsprDaemon server, here it is logs2. If this changes during the
currency of this Guide we will post a note on the WsprDaemon groups.io page.
The postgreSQL prompt shows the database name.
To connect directly to the tutorial database, with its tables kp, wsprdaemon_noise and
wsprdaemon_spots simply change -d wsprnet to -d tutorial in the command line above.
Sections 2–4 of this guide cover navigation and use of the database using psql through a wide
range of example queries.

2. WsprDaemon database navigation
Once connected to a database as in section 1.4, to list the tables in the database use \d:
wsprnet=> \d
 List of relations
 Schema | Name | Type | Owner
--------+-------------------+----------+----------
 public | spots | table | postgres
 public | spots_Spotnum_seq | sequence | postgres
 public | spots_spotnum_seq | sequence | postgres
To list the columns and data types within a table, use \d with the table name:
\d spots
This will output the list shown in Table 1.1. We will use these column names in our queries to
table spots, most are self explanatory to WSPR users, see Annex A for a full annotated list.
There is no need to log out and then back in to work with the other database, use \c and the
database name, for example, if connected to database wsprnet, to connect to database tutorial:
wsprnet=> \c tutorial

9 See https://www.postgresql.org/
10 See https://www.postgresqltutorial.com/

Version 2.1 January 2021 Gwyn Griffiths gwyn@autonomousanalytics.com

 - 8 -

psql (12.2, server 12.4 (Ubuntu 12.4-1.pgdg18.04+1))
SSL connection (protocol: TLSv1.3, cipher: TLS_AES_256_GCM_SHA384, bits: 256,
compression: off)
You are now connected to database "tutorial" as user "wdread".
tutorial=>
There is an extensive help system, accessible via \h for a list of commands, and then
\h command for specific details.
To exit use \q

3. Querying spots from the WsprDaemon wsprnet database
This section provides examples of interactive queries on table spots in database wsprnet
following on from the access and database selection details in Sections 1 and 2. Virtually all
examples use very simple postgreSQL expressions of the form:
SELECT something FROM table_name WHERE one_or_more_conditions
one_or_more_options;
The expression, which can span several lines, must end with a semicolon. If nothing seems to be
happening, you may have forgotten the semicolon. If you forget, just type ; at the next prompt.
The WHERE clause is not always needed.
To see a short example, for the last 10 records with the newest first from the table spots order by
time desc is included as an option, and limit 3 sets how many records to output to the screen. The
* signifies all fields.
First, connect to the database:
psql -U wdread -d wsprnet -h logs2.wsprdaemon.org
Password for user wdread: JTWSPR2008
wsprnet=> select * from spots order by wd_time desc limit 3;

The output to the screen is paged, press the space bar for the next page, or type q to end.
A where clause lets us specify columns of interest. Note the need for double quotes for
"Reporter", needed for a column name with a capital letter. Also, note the use of single quotes
around 'G3ZIL' and the wd_band '30'. Reporter and wd_band columns are of type character,
hence the need for single quotes. If omitted there will be an error message.
wsprnet=> select * from spots where "Reporter" = 'G3ZIL' and wd_band = '30'
order by wd_time desc limit 10;

3.1 Export query output to a file
In this interactive mode where you are connecting to the remote logs2.wsprdaemon.org server
you can download the result of a query to the current directory of your local computer using the
following:
tutorial=> \copy (select * from spots where "Reporter" = 'G3ZIL' and wd_band
= '30' order by wd_time desc limit 3) to 'G3ZIL_spots.csv' with csv;
COPY 3
The \ before the copy signifies an export to a file on the client computer. Note that the
postgreSQL query must be within parentheses. There are limitations in the ability of the csv

Version 2.1 January 2021 Gwyn Griffiths gwyn@autonomousanalytics.com

 - 9 -

format to handle some aspects of postreSQL output, such as NULLs; full details are in the
postgreSQL documentation11.
The output of the query on the local computer is:
pi@raspberrypi:~ $ cat G3ZIL_spots.csv
2020-11-12 11:18:00,2581778396,1605179880,G3ZIL,IO90hw,-
8,10.140184,DJ6OI,JO41tp,23,0,768,268,10, ,1,30,-999.9,-
999.9,80,50.938,-1.375,268,51.646,9.625,51.646,9.625
2020-11-12 11:18:00,2581778405,1605179880,G3ZIL,IO90hw,-
9,10.140157,OZ7IT,JO65df,37,0,1028,248,10, ,1,30,-999.9,-
999.9,57,50.938,-1.375,248,55.229,12.292,55.229,12.292
2020-11-12 11:16:00,2581773016,1605179760,G3ZIL,IO90hw,-
1,10.140275,OE7WRT,JN57qg,37,0,1012,298,10, ,1,30,-999.9,-
999.9,109,50.938,-1.375,298,47.271,11.375,50.938,-1.375

The wd_time format in the first column is directly usable in Excel or other spreadsheets as date
time.
Simple expressions in a query
Here is an example of a search for a particular Reporter and wd_band that only lists column dB
(that is, SNR) above a threshold of -10 dB, where only wd_time, CallSign and dB are requested
as output (wd_time is there by default). As dB is a numeric column we can use the mathematical
operator >, and no single quotes around its numeric value -10. But single quotes are needed
around '40' as wd_band is a text column. And a reminder, double quotes are needed around
Reporter, CallSign and dB as these column name contain capitals.
wsprnet=# select wd_time, "CallSign", "dB" from spots where "Reporter" =
'G3ZIL' and wd_band = '40' and "dB" > -10 limit 10;

3.2 Wildcards
Queries can include wildcards, where % matches zero or more characters or numbers. This
example uses like and the wildcard symbol % for any Grid with characters JN for Reporter
'G3ZIL' and where wd_band = '60', remembering the quotes:
wsprnet=# select wd_time, "CallSign", "Grid", "dB" from spots where "Grid"
like 'JN%' and "Reporter" = 'G3ZIL' and wd_band = '60' order by wd_time desc
limit 10;
The _ character represents one character or number. If needed there is not like to exclude.
This next example shows the syntax for a query where Grid can be any in EN or FN and receive
ReporterGrid any in IO or JO and wd_band is 30, note the required use of parentheses around the
or pairs:
wsprnet=# select wd_time, "CallSign", "Grid", "Reporter", "ReporterGrid",
"dB" from spots where ("Grid" like 'EN%'or "Grid" like 'FN%') and
("ReporterGrid" like 'IO%' or "ReporterGrid" like 'JO%') and wd_band = '30'
order by wd_time desc limit 10;

3.3 Mathematical operations
Mathematical operations on one or more columns are allowed; column names within the
mathematical expression (here "dB" - "Power" + 30) must be in double quotes as they include
capitals. In this example we calculate and output the SNR normalised12 to a transmit power of 30

11 See https://www.postgresql.org/docs/9.2/sql-copy.html
12 We are, of course, aware of the pitfalls of any attempt at normalisation, power may not be correctly
reported and the actual radiated power and directional characteristics of the transmit and receive antennas
are not often well known.

Version 2.1 January 2021 Gwyn Griffiths gwyn@autonomousanalytics.com

 - 10 -

dBm (1 watt) by subtracting Power from dB and adding 30. The as gives the resulting column a
name:
wsprnet=# select wd_time, "CallSign", "Grid", "Power", "dB", ("dB" - "Power"
+ 30) as "Norm_SNR" from spots where "Grid" like 'FN%' and "Reporter" =
'G3ZIL' and wd_band = '80' order by wd_time desc limit 10;

3.4 Simple statistics and how to specify a time interval
Simple statistics can be obtained as in these examples, having done a count first to check the
validity of the results. Here, as an example of how to set a time interval for the query we have
chosen to span approximately local night.
wsprnet=# select count("dB") from spots where wd_band = '40' and "Reporter"
= 'G3ZIL' and "CallSign"= 'K4APC' and wd_time > '2020-10-25T19:00:00Z' and
wd_time < '2020-10-26T07:00:00Z';

Having established that there are enough spots in the interval for meaningful statistics we form
the simple arithmetic average, with round to round the avg to the nearest integer:
wsprnet=# select round(avg("dB")) from spots where wd_band = '40' and
"Reporter" = 'G3ZIL' and "CallSign"= 'K4APC' and wd_time > '2020-10-
25T19:00:00Z' and wd_time < '2020-10-26T07:00:00Z';

This example is for max, we can also use min
wsprnet=# select max("dB") from spots where wd_band = '40' and "Reporter" =
'G3ZIL' and "CallSign"= 'K4APC' and wd_time > '2020-10-25T19:00:00Z' and
wd_time < '2020-10-26T07:00:00Z';

We can calculate standard deviation with stddev, and here we have used trunc with 1 to give the
result to 1 decimal places. We cast the result of stddev as numeric for trunc to work:
wsprnet=# select trunc(cast (stddev("dB") as numeric),1) from spots where
wd_band = '40' and "Reporter"= 'G3ZIL' and "CallSign"= 'K4APC' and wd_time >
'2020-10-25T19:00:00Z' and wd_time < '2020-10-26T07:00:00Z';
The statistics above have been evaluated over a specific, user-set time interval. Using a
Timescale extension to postgreSQL we can easily obtain statistics over a series of time intervals
by using time_bucket. In this example, we've set a time_bucket of 10 minutes, aliased as
ten_min, and we're calculating the median distance within each ten minute interval using the
percentile_disc function with 0.5 (i.e. the median, if we were after lower quartile it would be
0.25, and 0.75 for upper quartile):
wsprnet=# SELECT time_bucket('10 minutes', wd_time) AS ten_min,
percentile_disc(0.5) within group(order by distance) as """median""" FROM
spots WHERE "Reporter"= 'G3ZIL' AND wd_band = '40' GROUP BY ten_min order by
ten_min desc limit 10;

3.5 Query on the azimuth angle at the receiver.
wsprnet.org calculates the azimuth at the transmitter, azimuth, as the initial bearing of the path to
the receiver. However, wsprnet.org does not calculate the azimuth on arrival at the receiver. It is
the arrival azimuth, wd_rx_az, that is needed if one is looking to use WSPR spot information to
help evaluate the directionality of receive antennas. Except for special cases, such as receiver
and transmitter on the same longitude, or where the path distance is less than a few hundred km,
azimuth and wd_rx_az are not simply 180˚ apart. This example is for receiver KFS where band
is '40' and we search for transmitters from azimuths between 60˚ and 90˚ where distance is
between 1000 and 2000 km.
wsprnet=# select wd_time, "CallSign", "Grid", distance, wd_rx_az, "dB" from
spots where "Reporter" = 'KFS' and wd_band = '40' and distance > 1000 and
distance < 2000 and wd_rx_az > 60 and wd_rx_az < 90 limit 10;

Version 2.1 January 2021 Gwyn Griffiths gwyn@autonomousanalytics.com

 - 11 -

3.6 Query on the vertex latitude
We have added a calculation of the latitude and longitude of the position of the vertex of the
great circle path between transmitter and receiver. The vertex is the most northern or southern
position. In this example we select a series of parameters where the band is '40' and the vertex
latitude is > 60 (i.e. above 60˚N). Where the path is predominantly north-south the vertex is most
likely to be at either the receiver or transmitter. Queries on the vertex lat and lon may be
informative when looking at paths that are near to, or cross, the northern and southern Auroral
Ovals:
wsprnet=# select "CallSign", "Reporter", wd_tx_lat, wd_tx_lon, wd_rx_lat,
wd_rx_lon, wd_v_lat, wd_v_lon, "dB" from spots where wd_band = '40' and
wd_v_lat > 60 limit 10;

3.7 Select only spot lines with distinct field entries
In this example we want to list only distinct (unique) CallSigns heard by G3ZIL on 40 m in the
last hour, using the distinct on clause. Note the order by must match the distinct on field. This is
also an example of specifying a time interval between now() and an hour ago, note that 1 hour
must be in single quotes:
wsprnet=# select distinct on ("CallSign") * from spots where
"Reporter"='G3ZIL' and wd_time > now() - interval '1 hour' and wd_band='40'
order by "CallSign" limit 10;

3.8 Using subqueries: Order by a different column
In this example VK7JJ needed a list of distinct CallSigns as in 3.7 but required them to be
ordered by wd_time - a feature not directly available in postgreSQL, as the first order by column
has to be the distinct column. The solution was to use a subquery for the distinct and an outer
query for the order by wd_time. Note that the output of the subquery needs an alias, here it is
temp:
wsprnet=# select * from (select distinct on ("Reporter") * from spots where
wd_band ='40' and wd_time > '2020-11-12T08:00:00Z' and "CallSign" = 'VK7JJ'
order by "Reporter", wd_time desc) temp order by wd_time desc, "Reporter"
limit 10;

3.9 Use of Joins
As postgreSQL is a full relational database it provides the ability to join two or more tables.
First, we describe a variant - the 'self-join' - where a table is joined to itself, best explained using
an example. Here we output wd_time, CallSign, and dB (SNR) at two Reporters for instances
where both Reporters spot the same CallSign in the same two-minute interval. The from spots s1
gives us an alias s1 for one instance of our table spots and inner join spots s2 gives us a second
alias s2. As G4HZX only reports on 40 there is no need to check the bands match. We use these
aliases as prefixes to the column names to refer to the two instances of our single spots table:
wsprnet=# select s1.wd_time, s1."CallSign", s1."dB", s2."dB" from spots s1
inner join spots s2 on s1.wd_time = s2.wd_time and s1."CallSign" =
s2."CallSign" and s1."Reporter" = 'G3ZIL' and s2."Reporter" = 'G4HZX' order
by s1.wd_time desc limit 10;

In this example we calculate the SNR difference for the two Reporters and make sure the bands
are the same:
wsprnet=# SELECT s1.wd_time, s1."CallSign", s1."MHz", (s1."dB" - s2."dB") as
"""SNR_difference""" FROM spots s1 join spots s2 on s1.wd_time = s2.wd_time
and s1."CallSign" = s2."CallSign" and s1."Reporter" = 'G3ZIL' and
s2."Reporter" = 'G4HZX' and s1.wd_band='40' and s2.wd_band='40' order by
s1.wd_time desc limit 10;

Version 2.1 January 2021 Gwyn Griffiths gwyn@autonomousanalytics.com

 - 12 -

Using a left join lets us output those CallSigns heard by one station and not another within the
same two-minute interval on a band, in this case, those heard by G3ZIL but not by G4HZX:
wsprnet=# SELECT
 s1."wd_time" AS "time",
 s1.distance as km,
 s1."dB",
 s1."Reporter",
 s1."CallSign"
FROM spots s1
left join spots s2
on s1.wd_time = s2.wd_time
 and s1."Reporter" = 'G3ZIL' and s2."Reporter" = 'G4HZX'
 and s1.wd_band='40' and s2.wd_band='40'
 and s1."CallSign" = s2."CallSign"
where s1."Reporter" = 'G3ZIL' and s1.wd_band='40' and s2."CallSign" is null
order by s1.wd_time desc limit 10;

4. Queries from tutorial database: wsprdaemon_spots, wspraemon_noise and kp
Whereas our database wsprnet spots table contains data from all those reporting to wsprnet.org
our database tutorial only contains data uploaded directly by users of WsprDaemon13. The four
main reasons for this separate data route are:

1. Allows for immediate data upload even if wsprnet.org is down.
2. Allows for additional spot-related data columns derived from the wsprd program that are

not uploaded to, or handled by, the database at wsprnet.org.
3. Allows for a 'receiver' designator, useful for sites that report spots from multiple

receivers but under one reporting identifier, usually a callsign, to compare the results
between different receivers and or antennas.

4. Allows for noise estimates data to be uploaded, stored and queried alongside spots data.
In addition, the tutorial database contains tables of ancillary data, currently only kp, the
geomagnetic disturbance index, is available.

4.1 Table wsprdaemon_spots
The full list of data columns in table wsprdaemon_spots is shown in Annex A. While some
column names are different to table spots in our database wsprnet by now the reader will be
sufficiently familiar to not need a full set of examples that parallel those in section 3. Here we
will concentrate on those queries that cannot be run against the wsprnet spots table.
First, connect to database tutorial:
tutorial=# \c tutorial
In this example we calculate SNR difference between two receivers and two different callsigns
for a set span of spot distances reported by the first callsign, together with the tx_call, distance
and azimuth at the first callsign. We are using N6GN/K and N6GN/P as the reporters, with
specific receiver GN0 at N6GN/K and GN4 at N6GN/P, on 40 m and for spots between 0 and
5000 km distant.
tutorial=# SELECT
 s1.time AS time, s1.tx_call, s1.km, s1.rx_az,
 (s1."SNR" - s2."SNR") as "dB_difference"
from wsprdaemon_spots s1
join wsprdaemon_spots s2 on s1.time = s2.time
and s1."tx_call"= s2."tx_call"

13 See wsprdaemon.org

Version 2.1 January 2021 Gwyn Griffiths gwyn@autonomousanalytics.com

 - 13 -

and s1."rx_id"= 'N6GN/K' and s2."rx_id" = 'N6GN/P'
and s1."receiver"='GN0' and s2."receiver"='GN4'
and s1.band='40' and s2.band='40' and s1.km> 0 and s1.km<5000
order by time desc limit 20;

In this next example drawing on a parameter from the wsprd decoder not sent to wsprnet.org we
find the median SNR at G3ZIL on 40 m for the past 24 hours for the spots decoded by the Fano
decoder (osd_decode=0) and, when the Fano cannot produce a result, by the Ordered Statistics
Decoder (osd_decode=1), with a count of spots decoded by each. There is no median function as
such in postgreSQL and so we use the percentile_disc function with 0.5 (i.e. 50%). This snippet
also shows the use of the filter clause, note that table wsprdaemon_spots has been aliased to a for
brevity, and we've given headings for the derived variables:
tutorial=# SELECT osd_decode as decode_type,
 COUNT(a.osd_decode),
 percentile_disc(0.5) within group (order by a."SNR")
 filter (where osd_decode = 0) as Median_SNR_Fano,
 percentile_disc(0.5) within group (order by a."SNR")
 filter (where osd_decode = 1) as Median_SNR_Ordered_Statistics
FROM wsprdaemon_spots a
WHERE rx_id='G3ZIL' and band='40' and time > now()-interval'1 day'
GROUP BY a.osd_decode;
resulting in:
decode_type | count | median_snr_fano | median_snr_ordered_statistics
-------------+-------+-----------------+-------------------------------
 0 | 4857 | -12 |
 1 | 1173 | | -25

4.2 Table wsprdaemon_noise
The full list of data columns in table wsprdaemon_noise is shown in Annex A. Details of the rms
and c2 (FFT) algorithms used to estimate noise have been published in the Sept/Oct 2020 issue
of QEX14.
The noise time series are far more amenable to graphical presentations, e.g. using Grafana.
Nevertheless, the following example is of some interest. At G3ZIL the KiwiSDR receiver
G3ZIL_1 has an antenna switch board from Glenn Elmore N6GN at its input; as part of a
separate noise-measurement script the antenna input is switched to a 50 ohm terminator during
the interval between WSPR transmissions. In the example query below we see that the c2_level
FFT noise level estimate is reading noise from the antenna, as it is an estimate of the 30% of the
lowest value Fourier coefficients in, and adjacent to, the WSPR band throughout the
transmission period. However, the rms estimator looks for the quietest 50 milliseconds during
the gap between WSPR transmissions, in this case reading the noise level at the terminated input
to the KiwiSDR - a useful systems check.
tutorial=# select time, c2_level, rms_level from wsprdaemon_noise where
site='G3ZIL' and receiver='G3ZIL_1' and band='40' and time > now() - interval
'10 minutes' order by time desc;
 time | c2_level | rms_level
---------------------+----------+-----------
 2020-11-19 14:10:00 | -131.2 | -155.81
 2020-11-19 14:08:00 | -131.34 | -155.62
 2020-11-19 14:06:00 | -131.63 | -155.52

The next example is a simple count of the number of times the KiwiSDR overload counter ov is
greater than 0:

14 Gwyn Griffiths, Rob Robinett and Glenn Elmore "Estimating LF-HF band noise while acquiring
WSPR spots". QEX, ARRL, Sept-Oct 2020.

Version 2.1 January 2021 Gwyn Griffiths gwyn@autonomousanalytics.com

 - 14 -

tutorial=# select count (ov) from wsprdaemon_noise where site='G3ZIL' and ov
>0 and time > now()-interval'1 day';
count

 1
and in contrast, for KA7OEI-1, Northern Utah:
tutorial=# select count (ov) from wsprdaemon_noise where site='KA7OEI-1' and
ov >0 and time > now()-interval'1 day';
count

 1047

Version 2.1 January 2021 Gwyn Griffiths gwyn@autonomousanalytics.com

 - 15 -

Annex A. Description of data within columns of tables in wsprnet and tutorial
For ease of reference the column names ane types are repeated here. As a reminder:

• If the Column name contains a capital letter, e.g. Reporter, postgreSQL requires it to be
within double quotes, e.g. WHERE "dB" > 10

• If the Type is text or character postgreSQL requires it to be within single quotes, e.g.
WHERE "Reporter"='G3ZIL'. Note that column wd_band is of type text, as our initial
thought was to have entries for 60 and 60eu and 80 and 80eu but this has not been
implemented, thus use WHERE wd_band='80'.

Database wsprnet - table spots:
Column | Type
-------------+-----------------------------+
wd_time | timestamp without time zone
Spotnum | bigint
Date | integer
Reporter | text
ReporterGrid | character(6)
dB | smallint
MHz | double precision
CallSign | text
Grid | character(6) N
Power | smallint
Drift | smallint
distance | smallint
azimuth | smallint
Band | smallint
version | character(10)
code | smallint
wd_band | text
wd_c2_noise | real
wd_rms_noise | real
wd_rx_az | real
wd_rx_lat | real
wd_rx_lon | real
wd_tx_az | real
wd_tx_lat | real
wd_tx_lon | real
wd_v_lat | real
wd_v_lon | real

Columns with data from wsprnet.org

wd_time UTC time of the start of the two minute interval for a WSPR cycle and is in the
format 2018-11-19 18:30:00

Spotnum An unique identifier assigned by wsprnet to an incoming spot as they are
received at wsprnet.org.15

Date Unix epoch format in seconds, 1604915400 use converter, e.g. at
https://www.epochconverter.com/ to convert to human readable date.

Reporter Identifier as provided by the uploader of the WSPR data, e.g. KD0J, and may
include a suffix such as /A, /P etc.

15 Do not assume Spotnum to increment uniformly with time, a spot that arrives late, e.g. an Internet
outage at the reporter, will have a Spotnum issued at the time it is received at wsprnet.org, and not related
to the time the spot was decoded.

Version 2.1 January 2021 Gwyn Griffiths gwyn@autonomousanalytics.com

 - 16 -

ReporterGrid Maidenhead grid locator of the Reporter. It will be 6 characters if wsprnet.org
has that information.

dB Signal to noise ratio (SNR) as estimated within the decoder within WSJT-X
MHz Frequency in MHz as seen at the receiver by adding the measured audio

frequency to the 'dial' frequency for the selected band, reported to 6 decimal
places, i.e. 1Hz.

CallSign Identifier for the transmitting station, as decoded from the WSPR transmission.
Grid Maidenhead grid locator of the Reporter. It will be 6 characters if wsprnet.org

has a record for that CallSign.
Power Power reported by the transmitting station in dBm. 30 dBm = 1 Watt.
Drift Drift of the transmitted signal in Hz over the duration of the WSPR message

seen by the receiver (which may also drift).
distance Distance in km calculated from the receiver and transmitter grid squares.

Accuracy will be best with two 6-character locators.
azimuth Azimuth in degrees of the receiver as seen at the transmitter assuming a great

circle short path. Clockwise from north.
Band This is the band designator assigned by wsprnet.org as the frequency in MHz

as an integer except that 136 kHz is listed as -1. Note that there are spurious
entries, e.g. 49 with 7074, 41 with 2 (out of 238 million spots).

version Where available, the version of the WSJT-X software in use.
code A mode designator code: 1 is 'standard' WSPR2 and the new mode FST4W-

120, 2 is WSPR15 and FST4W-900, 4 is FST4W-300 and 8 is FST4W-1800.
columns of data derived during preprocessing by WsprDaemon server from the above.
wd_band Determined from the frequency by WsprDaemon preprocessing software,

expressed in metres for 2200 - 2 metres, with 70cm and 23cm as 70 and 23.
Where an appropriate band cannot be determined it is listed as 9999 (26,057 in
238 million).

wd_c2_noise & These two noise fields are set to absent data currently, i.e. -999.0.
wd_rms_noise
wd_rx_az Azimuth in degrees of the incoming signal at the receiver assuming a great

circle short path from the transmitter. Clockwise from north.
wd_rx_lat Latitude in degrees of the receiver calculated from Grid. Negative is south.

These numeric latitude and longitude fields allow for numeric SELECT
statements in postgreSQL queries.

wd_rx_lon Longitude in degrees of the receiver calculated from the rx_grid. Negative is
west.

wd_tx_lat Latitude in degrees of the transmitter calculated from the tx_grid. Negative is
south.

wd_tx_lon Longitude in degrees of the transmitter calculated from the tx_grid. Negative is
west.

wd_v_lat Latitude in degrees of the vertex of the great circle path between receiver and
transmitter. The vertex is the most northerly, or southerly, point on the path.
There are, of course, instances where the vertex is at the receiver or transmitter.

Version 2.1 January 2021 Gwyn Griffiths gwyn@autonomousanalytics.com

 - 17 -

This is calculated by WsprDaemon and can be useful when studying paths that
are near to or within the polar Auroral Ovals.

wd_v_lon Longitude in degrees of the vertex of the great circle path between receiver and
transmitter.

Database tutorial table wsprdaemon_noise
 Column | Type
-----------+-----------------------------
 time | timestamp without time zone
 site | text
 receiver | text
 rx_grid | text
 band | text
 rms_level | double precision
 c2_level | double precision
 ov | integer

time UTC time of the start of the two minute interval for a WSPR cycle and is in the
format 2018-11-19 18:30:00

site Usually the callsign of the reporting station, e.g. N6GN.
receiver It is not uncommon for WsprDaemon users to use more than one receiver. In

some cases they may use a separate site name e.g. N6GN/K to distinguish
different receivers and or different antennas. In other cases, this receiver
column allows the user to use a secondary identifier of their own choice, e.g.
N6GN has used GN0, GN1, GN2, GN3. As styles and usage vary, and there is
no metadata available, users of this table should consult the reporting station
for details.

rx_grid Maidenhead grid locator of the Reporter. It should be 6 characters.

band The band in metres; a text column that includes separate entries for 60, 60eu,
80 and 80eu. At least one site uses the noise estimation capability to estimate
the signal level of standard frequency stations, including WWVB, CHU-3,
WWV-10. For a full list use:

select distinct band from wsprdaemon_noise;

rms_level Noise estimate from the wsprdaemon RMS algorithm, essentially the RMS
value of the quietest 50ms within the gap between WSPR transmissions. Units
are dBm in 1Hz, however the absolute value will depend on the offset
calibration provided at the receiver (same goes for c2_level).

c2_level Noise estimate from the wsprdaemon FFT algorithm using the c2 decimated
samples file produced by wsprd.

ov For the KiwiSDR a count of the number of ADC overload events within the
two-minute reception interval.

Database tutorial table wsprdaemon_spots
This was our first table of WSPR spots and we chose column names that seemed appropriate, but
have ended up being different to the spots table in our wsprnet table (which we implemented
later with names requested by the wsprnet administrators). Nevertheless, the data fields should
be easily understood from the names and reference to the wsprnet spots table described above,
until the sync_quality column. Sync_quality and subsequent columns and fields available within
the wsprd decoding program but not sent to wsprnet.org. As the WsprDaemon program does

Version 2.1 January 2021 Gwyn Griffiths gwyn@autonomousanalytics.com

 - 18 -

have access to these fields and there is no impediment to their transmission to, and incorporation
in, the wsprdaemon_spots table they are included in case they may be of interest.
 Column | Type
---------------+--------------------------------
 time | timestamp without time zone
 band | text
 rx_grid | text
 rx_id | text
 tx_call | text
 tx_grid | text
 SNR | double precision
 c2_noise | double precision
 drift | double precision
 freq | double precision
 km | double precision
 rx_az | double precision
 rx_lat | double precision
 rx_lon | double precision
 tx_az | double precision
 tx_dBm | double precision
 tx_lat | double precision
 tx_lon | double precision
 v_lat | double precision
 v_lon | double precision
 sync_quality | integer
 dt | double precision
 decode_cycles | integer
 jitter | integer
 rms_noise | double precision
 blocksize | integer
 metric | integer
 osd_decode | integer
 receiver | character varying
 nhardmin | integer
 ipass | integer

sync_quality Our conjecture: A measure of how well the incoming sync symbol sequence is
synchronised to the sync vector sequence timed by the receiver's clock. The
raw variable is on a scale of 0 to 1 (but was recorded as the integer of 10 times
the raw value in V2.1), hence care needs to be taken if comparing across
versions.

dt This is the time difference between the actual start of the audio signal
presented to wsprd and 2 seconds past an even minute as perceived by the
clock at the receiver. wsprdaemon records the full 10ms resolution value.
There are (possibly at least) four main causes for a non-zero reading:

 1. A time offset from UTC in the clock at the transmitter.
 2. A time offset from UTC in the clock at the receiver.

 3. A delay (latency) at the transmitter between the clock-commanded start
of transmission and the actual transmission.
4. A delay (latency) at the receiver between the clock-commanded start of
reception and the actual audio file start.

decode_cycles This is the number of cycles taken for the Fano (default) or Jelinek (if selected)
decoder to produce an output. The default maximum number of cycles is

Version 2.1 January 2021 Gwyn Griffiths gwyn@autonomousanalytics.com

 - 19 -

10,000, but can be set with the -C option on calling wsprd. In practice the most
common value for decode_cycles (mode) is 1; for example, decode_cycles was
1 for 10212 out of 13285 spots for KD2OM on 40m, which is about 77%. This
field may also be refered to as Fano iterations-per-bit.

jitter Applied as a fine adjustment to the well-known dt time shift value. Centred on
zero, values are in steps of 8 between -64 and +64. and are tried in the
sequence 0, -8, 8, 16 etc. For 91092 spots at KD2OM 85645 i.e. 94% jitter was
0, 1.5% were at -8 and 1% at +8, and all allowed values to +/-64 were present.
While no unit is given, it is certainly time, and quite likely to be the sampling
interval, that is 1/375Hz or 0.26667 seconds, making each step of 8 equivalent
to 0.021333 seconds.

blocksize A parameter controlling the detection of individual symbols in the wsprd
demodulator. Allowable values are 1, 2, 3, units are symbols. A value of 1
signifies that the first try using non-coherent detection of individual symbols
was successful (sufficient), this is equivalent to the original wspr demodulator.
Blocksizes of 2 and above means that that many symbols are decoded at once;
from the source code, "Longer block lengths require longer channel coherence
time". Most of the time blocksize will be 1, as an example, of 90271 spots at
KD2OM 88214 were blocksize 1, 1575 at 2 and 482 at 3.

metric This is an output from the Fano (default) or Jelinek (if selected in the call to
wsprd.c) decoder. In Information Theory, metric is a measure of the "closeness
of a path to the received sequence". The distribution of metric for 92513 spots
at KD2OM is shown below. There is a broad asymmetric distribution at about
570. The singular peak at 810 is because that value is when the Fano (or
Jelinek) algorithm has failed. In that case, the Ordered Statistic Decoder (OSD)
is executed. It will come up with its decode, and if accepted, the osd_decode
flag (see below) will be set to 1. This happened (osd_decode flag set to 1) in
98.8% of instances when metric was 810 in this test case with KD2OM spots.

osd_decode Flag, either 0 or 1. If 0 then either the Fano (default) or the stack (Jelinek, only
if wsprd is called with option -J) decoding algorithms have been used to
decode. These algorithms can end without a decode being produced. If 1 then
the Ordered Statistics Decoder (OSD) has been used. This decoder will always
produce a decode - but of course it can be wrong. Therefore, wsprd only
accepts an OSD decode if the tx_call it produces is already in the hash table
having been decoded previously by the Fano or Jelinek algorithms.

receiver A user-supplied designator, exactly as used in the wsprdaemon_noise table.
nhardmin A count of the hard errors from the Fano (default) or the stack (Jelinek, only if

wsprd is called with option -J) decoding algorithm. Not yet clear what it
means if the Ordered Statistics Decoder (OSD) has been used.

ipass A flag determined by user set options and the number of passes required to
effect a decode. If wsprd is called with option -s (which it is not in
wsprdaemon) this is the single pass (now very old) mode, so ipass can never be
greater than 1, but (I think) can still be 1 if only a single pass was needed. If
option -B was set (which it is not in wsprdaemon) then block demodulation is
disables, only single-symbol noncoherent demodulation is used, and npass can
take the values 1 or 2. Otherwise, npass may take a value of up to 3.

Version 2.1 January 2021 Gwyn Griffiths gwyn@autonomousanalytics.com

 - 20 -

Annex B. Accessing the WsprDaemon database using node.js
This Annex is a note on how to use node.js to access the wsprnet database table spots on the
WsprDaemon server courtesy of Phil Barnard, VK7JJ, phil 'at' perite.com to whom we are
The code examples provided assume a working knowledge of node.js and its package manager
NPM.

1. Open an ssh connection in the terminal you use to connect to node.js
2. Use NPM to install the pg package https://www.npmjs.com/package/pg - documentation

of the pg package with examples: https://node-postgres.com/
3. The three sample scripts provided with this doc. all accept a simple postgres text query.

The pgclient and pgpool scripts are able to be run directly in a terminal via ssh and return their
results to the console. pgweb is for use with the node express web server module.
Database access details as required by db_config are available from WSPR Daemon.
NOTE: the script files are bundled as .txt files but need to be changed to .js before being run.
pgclient.js
A pg client is designed to be used for normal day to day personal queries of the db and is fine for
a personal web server.
Each client query connects to the db, authenticates, passes the query to the db and receives either
an error message or a JSON results.rows string and then disconnects from the db.
The overhead is inconsequential and queries are fast and efficient, there is no persistent
connection. The client_query function is as straightforward as possible with direct access to
errors and results.
pgpool.js
For use with a heavy duty server. A pool of of pre-authenticated clients is assigned by the WSPR
Daemon db server when the node.js server starts and is used for the life of the node server.
The pool.query method runs a query on the first available idle client and returns its result. Each
client is released back into the pool automatically.
Authentication occurs with the pool assigned as the web server starts up. The pool is only
released when the server is shut down.
The pool_query function is as straightforward as possible with direct access to errors and results.
pgweb.js
For use with a public facing web server and assumes the use of node express.
The web_query function is effectively copied and pasted from http://wsprd.vk7jj.com
Express (code not included) accepts Javascript fetch queries from the browser and calls the
web_query function for each query.
The web_query function takes two arguments, a query string and a response object passed to it
by express. It returns JSON stringified results.rows and errors to the web client using promises
with a catch.
A zip folder with these notes and the three script files can be downloaded from
http://wsprdaemon.org/VK7JJ_node_pg_how_to.zip

Version 2.1 January 2021 Gwyn Griffiths gwyn@autonomousanalytics.com

 - 21 -

Annex C. Bash script to read basic spot data from database wsprnet table spots
This bash script was written in conjunction with Jim Lill WA2ZKD to access spots data for his
real-time WSPR spots analysis website http://www.jimlill.com:8088/
Invoked as the script name with two arguments, the unique, wsprnet.org assigned, Spotnum at
which to start listing (SPOTNUM_START) and the number of rows required (N_SPOTS) it
returns the latest N_SPOTS rows to the standard output. Bash variable query_1 is formed within
a string with single quotes allowing double quotes internally for the column names with upper
case letters. Bash variable query if formed from concatenating ${query_1}, the required start
spotnum ${SPOTNUM} and number of rows in variable ${N_SPOTS} in an expression with
double quotes that does not upset the quoting within ${query_1} itself, and uses a \ to escape the
double quotes around the column name Spotnum.
Jim Lill added the awk lines to decode the type of WSPR transmission from the code data. This
decode to transmission type is only valid for spots after around 19 October 2020 when the code
column was repurposed by the wsprnet.org team to indicate the new modes in WSJT-X V2.3.0-
rc1.

#!/bin/bash

WSPRDAEMON_TIMESCALE_HOST="logs2.wsprdaemon.org"
SPOTNUM_START=$1
N_SPOTS=$2

query_1='select wd_time, "CallSign", "MHz", "dB", "Grid", "Power","Reporter",
"ReporterGrid", code, "Spotnum" from spots where "Spotnum" > '
query="${query_1} ${SPOTNUM_START} order by "\""Spotnum"\"" asc limit
${N_SPOTS};"

PGPASSWORD=WA2ZKD psql -U wdjim -d wsprnet -h ${WSPRDAEMON_TIMESCALE_HOST} -A
-F, -t -c "$query" 2> wdquery.log | \
awk -F, 'BEGIN { OFS="\t" }
 $9 == 1 { $9 = "WSPR2" }
 $9 == 2 { $9 = "WSPR15" }
 $9 == 4 { $9 = "FST4W-300" }
 $9 == 8 { $9 = "FST4W-1800" }
 { printf ("%s %-12s\t %.6f\t %s\t %s\t %s\t %-12s\t %s\t %s %s\n",
$1, tolower($2), $3, $4, $5, $6, $7, $8, $9, $10)}'

Use and output:
Gwyn-2:desktop gxg$./getspots.sh 2596339190 3
2020-11-17 22:08:00 w3ts 0.475629 -7 FN10ml 37 WB3AVN
 FM19og WSPR2 2596339191
2020-11-17 22:08:00 g8axa 7.040068 -22 JO01bi 27 SM0JZT
 JO89ul WSPR2 2596339192
2020-11-17 22:08:00 kk4df 10.140182 -22 EM85pf 27 WO7I
 DN10cw WSPR2 2596339193
Typical time taken for 10000 rows into a file:
Gwyn-2:desktop gxg$ time ./getspots.sh 2596339190 10000 >test.csv
real 0m2.332s
user 0m0.135s
sys 0m0.062s

Version 2.1 January 2021 Gwyn Griffiths gwyn@autonomousanalytics.com

 - 22 -

Annex D. Skeleton of a Python script to read the WsprDaemon wsprnet database

This skeleton shows how to use the adapter psycopg2 on a local computer to read data from the
logs2.wsprdaemon.org wsprnet database table spots and send to the standard output. This script
needs psycopyg2 and postgreSQL to be installed (see section 1).
The line select_sql in the example ts_spot_read_1.py can be changed to whatever query you
wish to use. However, as it stands, the line cannot contain a column name with a capital letter as
that would need double quotes that would conflict with the required double quotes around the
entire select_sql line. The way around this is to split the sql declaration into two or more lines,
with the line needing an upper case column name in single quotes and then concatenating the
lines into a single query line, as in the example ts_spot_read_2.py.
Both skeletons are invoked with a single argument, the number of rows to return, as in the two
examples below.
pi@ZIL-Kiwi:~ $ cat ts_spot_read_1.py
#!/usr/bin/python
ts_spot_read.py Gwyn Griffiths March 2020
See https://wiki.postgresql.org/wiki/Psycopg2_Tutorial for further details

import psycopg2
import sys

N_RECS=sys.argv[1]
select_sql="SELECT * from spots ORDER BY wd_time DESC LIMIT " + str(N_RECS)
print(select_sql)

try:
 # connect to the PostgreSQL database
 print("about to connect")
 conn = psycopg2.connect("dbname='wsprnet' user='wdread'
host='logs2.wsprdaemon.org' password='JTWSPR2008'")
 # create a new cursor
 cur = conn.cursor()
 cur.execute(select_sql)
 rows = cur.fetchall()
 for row in rows:
 print row
 # close communication with the database
 cur.close()
except:
 print ("Unable to connect to the database")
finally:
 if conn is not None:
 conn.close()

pi@ZIL-Kiwi:~ $ python ts_spot_read_1.py 2
SELECT * from spots ORDER BY wd_time DESC LIMIT 2
about to connect
(datetime.datetime(2020, 11, 14, 15, 52), 2587640089L, 1605369120, 'AF5WW', 'EM10ck',
-26, 14.096998, 'W8ARD', 'EN80mb', 37, 0, 1716, 236, 14, '2.1.0 ', 1, '20', -999.9,
-999.9, 47.0, 30.438, -97.792, 236.0, 40.062, -82.958, 40.062, -82.958)
(datetime.datetime(2020, 11, 14, 15, 52), 2587640094L, 1605369120, 'AF5WW', 'EM10ck',
-25, 14.097078, 'K6IA', 'DM26he', 23, 0, 1751, 106, 14, '2.1.0 ', 1, '20', -999.9,
-999.9, 296.0, 30.438, -97.792, 106.0, 36.188, -115.375, 36.188, -115.375)

pi@ZIL-Kiwi:~ $ cat ts_spot_read_2.py
#!/usr/bin/python
ts_spot_read.py Gwyn Griffiths March 2020
See https://wiki.postgresql.org/wiki/Psycopg2_Tutorial for further details

import psycopg2

Version 2.1 January 2021 Gwyn Griffiths gwyn@autonomousanalytics.com

 - 23 -

import sys

N_RECS=sys.argv[1]
example of how to construct the sql line where one needs to double quote a column
name
use single quotes for that part
select_sql_1='SELECT * from spots where "Reporter"='
select_sql_2=select_sql_1 + " 'G3ZIL' ORDER BY wd_time DESC LIMIT " + str(N_RECS)
print(select_sql_2)

try:
 # connect to the PostgreSQL database
 print("about to connect")
 conn = psycopg2.connect("dbname='wsprnet' user='wdread'
host='logs2.wsprdaemon.org' password='JTWSPR2008'")
 # create a new cursor
 cur = conn.cursor()
 cur.execute(select_sql_2)
 rows = cur.fetchall()
 for row in rows:
 print row
 # close communication with the database
 cur.close()
except:
 print ("Unable to connect to the database")
finally:
 if conn is not None:
 conn.close()

pi@ZIL-Kiwi:~ $ python ts_spot_read_2.py 2
SELECT * from spots where "Reporter"= 'G3ZIL' ORDER BY wd_time DESC LIMIT 2
about to connect
(datetime.datetime(2020, 11, 14, 15, 50), 2587637638L, 1605369000, 'G3ZIL', 'IO90hw',
-18, 10.14029, 'LY3LT', 'KO24 ', 23, 0, 1806, 268, 10, ' ', 1, '30', -999.9,
-999.9, 67.0, 50.938, -1.375, 268.0, 54.5, 25.0, 54.5, 25.0)
(datetime.datetime(2020, 11, 14, 15, 50), 2587637647L, 1605369000, 'G3ZIL', 'IO90hw',
-28, 10.14023, 'OH6FSG', 'KP23 ', 20, -1, 2085, 240, 10, ' ', 1, '30', -
999.9, -999.9, 38.0, 50.938, -1.375, 240.0, 63.5, 25.0, 63.5, 25.0)
pi@ZIL-Kiwi:~ $

Version 2.1 January 2021 Gwyn Griffiths gwyn@autonomousanalytics.com

 - 24 -

Annex E. KNIME example
While Grafana16 is a very good data presentation package for WSPR-associated data it lacks,
natively and through third-party extensions, many of the data analysis and graphing features that
some users may need. KNIME is a data analysis and graphing package with serious scientific
and engineering ambitions. Like Grafana it has capabilities from built-in and third-party
extensions (nodes in KNIME terminology). The author is grateful to Brett Rider (G4FLQ) for an
introduction to KNIME.
There's a very useful series of tutorials17 online on installation and first steps and KNIME itself
has extensive guides18 and documentation. For now, here is a trivial example that gives a flavour
of KNIME. If KNIME is of real interest to you please get in touch with the author.

Figure D.1 Example screenshot of a KNIME workbench.

Figure D.1 shows an example KNIME Workbench with a workflow connecting to the
WsprDaemon database tutorial, wsprdaemon_spots table, to produce the two graphs shown. The
KNIME Explorer block, top left, shows KNIME projects stored locally; bottom left is Node
REpository where you can find nodes (functional blocks) for various purposes (e.g. inputting,
processing, graphing etc.) either in the basic KNIME package or online. The large window with
a grid is the Workflow Editor. There are other windows but they have been closed for clarity.
Leftmost in the Workflow Editor is the PostgreSQL Connector - this has been dragged to the
Editor from the Node Repository on the left from folder DB, sub-folder Connection. Next, open
the DB Query sub-folder and drag DB Table Selector to the Editor, click and drag from the
output (red box) of the PostgreSQL Connector to the input of the DB Table Selector - this is the
standard method to connect nodes.

16 See wsprdaemon.org/grafana.html for an outline and link to a Guide on Grafana & WsprDaemon
17 See http://marcoghislanzoni.com/blog/2016/04/27/knime-for-beginners-part-1/
18 docs.knime.com/2018-12/analytics_platform_workbench_guide/index.html is a good place to start

Version 2.1 January 2021 Gwyn Griffiths gwyn@autonomousanalytics.com

 - 25 -

Next we need the DB Reader node from folder DB sub-folder Read/Write, and connect to the
DB Table Selector. In this example we will simply show two types of plot, a 2D Density Plot
using the Plotly library and a simple Histogram. We've found the Histogram node in the Node
Repository folder Views, sub-folder JavaScript, and the 2D Density Plot in the KNIME Labs,
JaveScript Views, Plotly sub-folder. This type of plot, with shading and non-parametric density
contours is a useful type of plot, and one not available via Grafana.
Naturally, this graphical representation hides the real detail, which the user can't really escape
from. Thus, right-clicking the PostgreSQL Connector node (same for the others) brings up a list
of options of which the top is Configure, a tabbed series of options and input fields necessary for
the node to function in your application. Figure D.2 left shows the left-most Configure tabs of
the PostgreSQL Connector node. Here we've specified the hostname, database name and
provided username and password. A right click followed by menu option Execute should turn
the node Traffic Light from yellow to green on a successful connection.
Figure D.2 right shows the left-most Configure tabs for the DB Table Selector node, here we
select the table name from a pull down list (after the Connector Node has successfully
connected) and this is where we enter the SQL we wish to run. The DB Reader node is
configured and executed in a similar way.

Figure D.2 Configuration screens (the left-most tabs) for left: postgreSQL Connector and

right: DB Table Selector.

In the 2D Density Plot node the Options tab sets the X and Y columns to plot, the General Plot
Options tab lets you annotate the axes and set the image dimensions in pixel - each image will
appear in a separate Chromium (by default) web browser window. The Control Options tab
enables a plethora of user interaction facilities with the plot; even more options are available via
a separate online package if you tick the "Enable link to Plotly editor" box (and even more
options if you subscribe to their service).
To see the plots, right click a plot node and select option Execute and Open Views. After a few
moments (there is a % progress bar under the node) a graph should appear in a separate browser
window. The easiest way to save the graphics image is via File Print in the Browser menu and
select Save as pdf as the destination option.
For each node the option at the bottom provides more information. For the Connector node it is
the postgreSQL connection details; for the Table Selector node it gives the Table and column
data type details and the query; for the DB Reader it gives a listing of row number and the data
requested in the SQL statement, the Spec tab gives lower and upper bounds for each column.
This is just the briefest of introductions to KNIME.

Version 2.1 January 2021 Gwyn Griffiths gwyn@autonomousanalytics.com

 - 26 -

Annex F. Octave route
The author would be very pleased to hear from anyone that has tried and failed or succeeded
with implementing the postgreSQL package with Octave on Ubuntu.
The latest package release can be found at: octave.sourceforge.io/database/index.html
Ubuntu
Installation instructions are at: wiki.octave.org/Database_package. However, Glenn Elmore
N6GN found this approach to work when trying pkg install within Octave did not:
sudo apt-get update -y
sudo apt-get install -y octave-struct
However, despite having the necessary pg_config file in directories:
/usr/lib/postgresql/12/bin/pg_config
/usr/bin/pg_config
and using addpath() to point to pg_config the database package would not install within Octave
via
pkg install -forge database

Windows 10
Glenn Elmore N6GN found the following approach, within Octave V4.4, worked
pkg install -forge struct
pkg install -forge database

MacOS
The author is running Octave V6.0 [this is needed for features that make generating a video from
single image frames a one-script process]. The macOS version is available as a dmg file at:
https://github.com/octave-app/octave-app/releases/tag/v6.0.90-rc1
Noting the dependencies at octave.sourceforge.io/database/index.html, the step within Octave:
pkg install -forge struct
runs, although with warnings. However, the step:
pkg install -forge database
initially failed as it could not find the pg_config file (postgreSQL API).
This was corrected by copying the 'missing' pg_config file from a postgreSQL directory to the
directory where the pkg script was looking, i.e.
cp /usr/local/Cellar/libpq/13.1/bin/pg_config /Applications/Octave-
6.0.90.app/Contents/Resources/usr/Cellar/octave-octave-
app@6.0.90/6.0.90/bin/pg_config
The pkg install -forge database script now ran, although with warnings, nevertheless the database
package installed and could be loaded using the following command at the Octave prompt:
>> pkg load database

Octave script to demonstrate database connection
The following Octave script connect_wd_wsprnet.m sets the connection parameters as variables
for the pq_connect line to return the latest row from the spots table and then prints it as a data
structure struct:

% Bare bones Octave script to demonstrate access to the WsprDaemon
% wsprnet database table spots % Gwyn Griffiths G3ZIL November 2020
% Tested on Matlab V4.4 and on V6.0

Version 2.1 January 2021 Gwyn Griffiths gwyn@autonomousanalytics.com

 - 27 -

% Follow notes at wiki.octave.org/Database_package and
octave.sourceforge.io/database/index.html
% for database package installation notes
% load the installed database package pkg load database;
% set up default connection parameters
dbname="wsprnet";
host="logs2.wsprdaemon.org";
port="5432";
user="wdread";
password="JTWSPR2008";

% connect to the database
conn = pq_connect (setdbopts ("dbname", dbname, "host", host, "port", port,
"user", user, "password", password));

% get the latest single row into datastructure spots

struct = pq_exec_params (conn, "select * from spots order by wd_time desc
limit 1;");

spots=getfield(struct,'data'); %produces cell array

% close the connection
pq_close(conn);
% print out the structure, which has the column names etc and the data
struct

% print out the cell array
spots

The octave script below access the WsprDaemon wsprnet database table spots and uses the
m_map toolkit19 to plot, on a great circle map, the locations of spots heard in the last hour. It
reads in the band, but does nothing with it, but it does show how a character column representing
numbers should be handled. [There looks to be an issue with m_grid in Octave V6.0 due to use of
char(176) for the degree sign ˚ causing a UTF-8 error; it was fine in Octave 4.4. If you are
confident, you can change occurrences of char (176) in m_grid to char(111), lower case o,
which is what I did here].
% Program to illustrate Octave connection to WsprDaemon wsprnet database
table spots
% with a postgreSQL query that shows how to handle double quotes around upper
case
% together with the simple use of the m_map package to draw a great circle
world map and plot
% location of stations heard
% Gwyn Griffiths G3ZIL 17 November 2020 V1.0
% This version using Octave 6.0 on a macbook pro

% m_map package available from https://www.eoas.ubc.ca/~rich/map.html
%
% load the installed database package
pkg load database;

% set up connection parameters
dbname="wsprnet";
host="logs2.wsprdaemon.org";

19 See https://www.eoas.ubc.ca/~rich/map.html

Version 2.1 January 2021 Gwyn Griffiths gwyn@autonomousanalytics.com

 - 28 -

port="5432";
user="wdread";
password="JTWSPR2008";

% connect to the database
conn = pq_connect (setdbopts ("dbname", dbname, "host", host, "port", port,
"user", user, "password", password));

% get the last hour of time, lat, lon and band of stations heard by G3ZIL
from spots
% into datastructure struct
% Note how we deal with escaping the double quotes, e.g. around "Reporter"
% which is different to Bash, here we do not need to end previous text with "

struct = pq_exec_params (conn, "select wd_time, wd_tx_lat, wd_tx_lon, wd_band
from spots where \"Reporter\"=\'G3ZIL\' and wd_time > now() -interval \'1
hour\' order by wd_time desc;");

% convert the data parts of the structure into a cell array
spots=getfield(struct,'data'); %produces cell array

% close the connection
pq_close(conn);

% for loop to move the data from the cell array into individual variable
vectors
n_spots=rows(spots); % number of rows in the dataset, i.e. in last
hour
for i=1:n_spots
 t_lat(i)=spots{i,2}; % same ordering as in the postgreSQL select
 t_lon(i)=spots{i,3};
endfor

% as the band values are of type character we need to convert to decimal
band=base2dec(spots(:,4),10);

% plot lat and lon of stations heard using the m_map toolbox
% in m_proj use the azimuthal equidistant, i.e. great circle map lat and lon
specify
% the centre of the map 'rad' specifies the radius in degrees, 180 would be
all globe
% m_coast gives us a simple coastline, m_grid gives lat lon gridlines
% the function m_ll2xy changes rectangular coordinates lat lon to thos
suitable for the projection
% the line function plots the data with the style parameters given
% print saves the graphics file

m_proj('azimuthal equidistant', 'lon',[-1], 'lat', [50], 'rad', [160], 'rec',
'circle');
m_coast('linewidth',1,'color','b');
m_grid('ytick', [-20 0 20 40 60 80], 'fontsize', 12);
[M,N]=m_ll2xy(t_lon, t_lat);
line(M,N, 'linestyle', 'none',
'marker','square','markersize',3,'color','green');
print(gcf, '-dpng', fullfile(sprintf('map.png')));

See example map output below.

Version 2.1 January 2021 Gwyn Griffiths gwyn@autonomousanalytics.com

 - 29 -

Version 2.1 January 2021 Gwyn Griffiths gwyn@autonomousanalytics.com

 - 30 -

Annex G. The briefest of introductions to using WsprDaemon with R
R is a powerful programming language20 for "statistical computing and graphics". This Guide's
author has only the most basic skills with R; he is not alone21 in considering the language hard to
learn. Consequently, I was delighted that Andi Fugard (M0INF) shared a comprehensive set of
examples on how to query the WsprDaemon wsprnet database spots table using R on his website
at https://inductivestep.github.io/WSPR-analysis/
The following notes begin with how to obtain R, installing the packages required to run Andi's
examples and add a few further examples. To get an impression of the enormous range of graph
types available using R visit http://r-graph-gallery.com/.
Installation details for Linux, MacOS X and Windows are available on a number of CRAN
Mirrors, including https://cran.ma.imperial.ac.uk/
These examples were run using R-4.0.3.
With R installed and running a number of packages need to be installed to provide the functions
used in Andi's examples, and so at R's > prompt:
install.packages ('DBI')
install.packages ("RPostgres")
install.packages ("tidyverse")
install.packages ("DT")
install.packages ("fuzzyjoin")
install.packages ("tmap")
install.packages ("sf")
install.packages ("ggeffects")
install.packages ("effects")
Once installed these need to be loaded for the session,
library(RPostgres)
library(DBI)
library(tidyverse)
library(DT)
library(knitr)
library(fuzzyjoin)
library(tmap)
library(sf)
library(ggeffects)
library(effects)

more conveniently, these lines can be put in a text file and then read in from the File ... Source
File pull down (on MacOS).
Following Andi's webpage, the following provide connection details and then connect to the
WsprDaemon wsprnet database table spots:
db_name <- "wsprnet"
db_host <- "logs2.wsprdaemon.org"
db_user <- "wdread"
db_password <- "JTWSPR2008"
db_con <- dbConnect(RPostgres::Postgres(),
dbname = db_name,
host = db_host,
user = db_user,
password = db_password)

20 See https://www.r-project.org/
21 See http://r4stats.com/articles/why-r-is-hard-to-learn/ for example. There is a nice web tutorial at
http://rtutorialseries.blogspot.com/2009/10/r-tutorial-series-introduction-to-r_11.html

Version 2.1 January 2021 Gwyn Griffiths gwyn@autonomousanalytics.com

 - 31 -

alternatively, to connect to the WsprDaemon tutorial database for the wsprdaemon_spots and
wsprdaemon_noise tables, simply alter the first line to:
db_name <- "tutorial"
To list the available tables, in this case where we've specified db_name as "tutorial":
dbListTables(db_con)
[1] "kp" "wsprdaemon_noise" "wsprdaemon_spots"

The following example is a variant on a query in Andi's notes, where we've specified db_name
as "wsprnet". It reads in one day of spots from G3ZIL on 20 m. Note that the double quotes
needed for the "Reporter" field name with an upper case letter has been escaped as \"Reporter\":
one_day <- dbSendQuery(db_con,
"SELECT * FROM spots
WHERE \"Reporter\" = 'G3ZIL'
AND wd_band='20'
AND wd_time >= '2021-01-03T00:00:00Z'
AND wd_time < '2021-01-04T00:00:00Z';")

Note that dbSendQuery only works for SELECT queries. This only sends the query; it does not
extract the records requested. Extracting records is done using dbFetch, followed by a
dBClearResult to finish:
the_dat <- dbFetch(one_day)
dbClearResult(one_day)

The dBSendQuery documentation22 notes that, "The query is submitted to the database server and
the DBMS executes it, possibly generating vast amounts of data. Where these data live is driver-
specific: some drivers may choose to leave the output on the server and transfer them piecemeal to
R, others may transfer all the data to the client -- but not necessarily to the memory that R manages.
See individual drivers' dbSendQuery documentation for details."

The data resulting from the dbFetch can be examined using:
the_dat %>%
datatable(options = dt_options)

The data appears as a web page in a browser. For the query above, which returned 1053 rows, it
appears that the data was transferred from the server to the local machine running R. However, if
the same query was run without specifying a band, i.e. to select spots from all bands, resulting in
a total of 11,019 rows in this case, the following message appeared, "Warning message:
In instance$preRenderHook(instance) :
 It seems your data is too big for client-side DataTables. You may consider server-side
processing: https://rstudio.github.io/DT/server.html"

Andi's webpage has numerous examples of different kinds of data plots, here is a variant on
those presented, using ggplot with geom_bin2D to give a heatmap (2D histogram) of the number
of spots in time/distance bins:
the_dat %>%
ggplot(aes(wd_time, distance)) +
geom_bin2d(bins = 24) +
scale_fill_continuous(type = "viridis") +
scale_y_continuous(trans = "log10")

22 See https://www.rdocumentation.org/packages/DBI/versions/0.5-1/topics/dbSendQuery

Version 2.1 January 2021 Gwyn Griffiths gwyn@autonomousanalytics.com

 - 32 -

where we have specified a log10 y axis, which results in the plot below. Here we have spots via
ground wave from local senders, a block at 3000 km and less (from Europe) that slopes from
distant to near through daytime hours, a horizontal band representing North American senders
from about 0700 to 1800 UTC, and Australia from about 1000 to 1600 UTC:

The following is an example of a different type of plot, drawing on the WsprDaemon tutorial
database table wsprdaemon_spots for columns metric23 and SNR. Here we extract seven days of
spots from 40 m from G3ZIL, having connected to database tutorial:
seven_days <- dbSendQuery(db_con,
"SELECT * FROM wsprdaemon_spots
WHERE rx_id = 'G3ZIL'
AND band='40'
AND time >= '2021-01-01T00:00:00Z'
AND time < '2021-01-08T00:00:00Z';")

the_data <- dbFetch(seven_days)
dbClearResult(seven_days)

List the data to a web page to check:
the_data %>%
datatable(options = dt_options)

Use ggplot with SNR on the x axis and metric on the y axis, with stat_density_2d being called to
produce filled contours.

23 See page 19 for a working definition of metric

10

100

1000

10000

Jan 03 00:00 Jan 03 06:00 Jan 03 12:00 Jan 03 18:00 Jan 04 00:00
Time

D
is

ta
nc

e
(k

m
)

20

40

60

count

3 Jan 2021, 20m band
WSPR reports of G3ZIL

Version 2.1 January 2021 Gwyn Griffiths gwyn@autonomousanalytics.com

 - 33 -

the_data %>%
ggplot(aes(SNR, metric))
stat_density_2d(aes(fill = ..level..), geom = "polygon", colour="white")
labs(x = "SNR", y = "Metric",
title = "Derived from WSPR reports of G3ZIL",
subtitle = "1–8 Jan 2021, 40m band")

The peak at a metric of 810 represents those spots decoded sent to the Ordered Statistics Decoder
rather than the Fano decoder.

The following is a simple example comparing the c2_FFT and rms noise level estimates within
database tutorial table wsprdaemon_noise. The data is from the Northern Utah SDR site
KA7OEI-1 on 80 m between 1 and 7 January 2021.
five_days <- dbSendQuery(db_con,
 "SELECT * FROM wsprdaemon_noise
 WHERE site = 'KA7OEI-1'
 AND receiver='NUT_KIWI5'
 AND band='80'
 AND c2_level>-174
 AND time >= '2021-01-01T00:00:00Z'
 AND time < '2021-01-06T00:00:00Z';")
the_data <- dbFetch(five_days)
dbClearResult(five_days)

Calculate the summary statistics, note that the character between the two variables is a tilde ~
and not a minus sign:
summary(lm(the_data$c2_level ~ the_data$rms_level))

0

200

400

600

800

-30 -20 -10 0
SNR

M
et
ric

0.00005

0.00010

0.00015

0.00020

0.00025
level

1–8 Jan 2021, 40m band
Derived from WSPR reports of G3ZIL

Version 2.1 January 2021 Gwyn Griffiths gwyn@autonomousanalytics.com

 - 34 -

Call:
lm(formula = the_data$c2_level ~ the_data$rms_level)
Residuals:
 Min 1Q Median 3Q Max
-7.0665 -0.5004 -0.0531 0.4162 6.6198
Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.440125 0.393603 3.659 0.000257 ***
the_data$rms_level 1.003274 0.003088 324.929 < 2e-16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.8682 on 3488 degrees of freedom
Multiple R-squared: 0.968, Adjusted R-squared: 0.968
F-statistic: 1.056e+05 on 1 and 3488 DF, p-value: < 2.2e-16

and plot the scatter plot with a linear fit:
the_data %>%
ggplot(aes(c2_level,rms_level)) +
geom_point() +
geom_smooth(method=glm , color="red",fill="#69b3a2", se=TRUE,
show.legend=TRUE) +
labs(x = "Noise level c2 FFT estimate (dBm in 1 Hz)", y = "Noise level rms
estimate (dBm in 1 Hz)",
title = "Derived from WsprDaemon noise estimates at KA7OEI-1 Northern Utah
SDR",
subtitle = "1–6 Jan 2021, 80m band KIWI_5 receiver")

-140

-135

-130

-125

-120

-115

-135 -130 -125 -120 -115
Noise level c2 FFT estimate (dBm in 1 Hz)

N
oi

se
 le

ve
l r

m
s

es
tim

at
e

(d
B

m
 in

 1
 H

z)

1–6 Jan 2021, 80m band KIWI_5 receiver
Derived from WsprDaemon noise estimates at KA7OEI-1 Northern Utah SDR

Version 2.1 January 2021 Gwyn Griffiths gwyn@autonomousanalytics.com

 - 35 -

Annex H. A 'Big Data' approach to using data from the WsprDeamon databases
In a 5 January 2021 post (https://groups.io/g/wsprdaemon/message/125) to the WsprDaemon
groups.io site Greg Beam, KI7MT, outlined a 'Big Data' approach he is pursuing to working with
WSPR data. His starting point has been reading spot data from the csv format wsprnet.org
archive files. Having discovered WsprDaemon he intends to make available tools to read spot
data from the WsprDaemon postgreSQL databases.
More details on Greg's approach are in the exchanges following his initial post to
groups.io/wsprdaemon, with more detail and resources on his github pages at
https://github.com/KI7MT/wspr-analytics. Specific resources for working with WsprDaemon
will be in the wsprdaemon directory. The annotated diagram below is my interpretation of the
main steps of Greg's approach.

On the following page we reproduce Greg's two examples of query times using the path outlined
above for February 2020 spots data initially read from the wsprnet.org csv archive file.
In summary, on an undeclared machine/cluster:
 The record count time (47,310,649 records) was 0.90 seconds.
 A group by reporter count, ordered by record count for the top 10 took 4.94 seconds.
The next page also includes the code and times taken for the equivalent postgreSQL queries on
the logs2.wsprdaemon.org server for data from September 2020 (we do not have February 2020).
In summary, on logs2.wsprdaemon.org using postgreSQL directly on the database:
 The record count time (50,262,680 records) was 2.20 seconds.
 A group by reporter count, ordered by record count for the top 10 took 3.32 seconds.

Version 2.1 January 2021 Gwyn Griffiths gwyn@autonomousanalytics.com

 - 36 -

Greg Beam's metrics using the 'Big Data' approach:

Using postgreSQL directly on September 2020 data on the logs2.wsprdaemon.org server:

Version 2.1 January 2021 Gwyn Griffiths gwyn@autonomousanalytics.com

 - 37 -

Annex I. A column-oriented database approach - Clickhouse
Over the last twenty years column-oriented databases have become popular24 for data-intensive
applications. Values from individual columns are stored contiguously in memory, with
compression best suited for the column data type (e.g. numeric or character). As a result,
column-oriented queries, especially aggregates such as count and average are very fast. This
approach is well suited to time series data where inserts are overwhelmingly added to the end of
the existing data.
Of the many column-oriented databases available25, Clickhouse26 has grown an impressive list of
adopters27, including Alibaba Cloud, Bloomberg, CERN and Cisco. It was developed for
Yandex.Metrica ("the second largest web analytics platform in the world") by Yandex, Russia's
largest technology company. From 2008–2015 a subsidiary, Yandex Labs, operated from Palo
Alto, USA.
Arne, who has created the https://wspr.live/ website uses Clickhouse as the database, and, in
January 2021, switched to obtaining data from logs2.wsprdaemon.org (currently only those
columns available on wsprnet.org, not the WsprDaemon-added columns). A query for the next
1000 rows is sent every minute and the rows returned added to the database. If exactly 1000
rows are returned the query is repeated with some seconds delay to get all the new data.
However, the wspr.live Clickhouse database is also populated with all of the spots ever reported
to wsprnet.org. Arne has a simple data exporter for user specified times and calls at
fggs.de/wspr_downloader.php, and numerous Grafana visualisation dashboards at
https://wspr.live/gui/
The impressive compression capability of Clickhouse means that (as of 19 January 2021) the
wspr.live database, containing some 2.587 billion WSPR spot records, took up just 31 GB of
disk space, an almost unbelievable 12 bytes per record. A count of how many records were in the
database took 0.002 seconds, suggesting this metric is continually updated. In contrast the
wsprnet spots table on logs2.wsprdaemon.org had 425 million records (July 2020 to 22 January
2021) and, with the extra columns, occupied 65 GB, plus 20 GB for the index, for a total of 85
GB, that is 200 bytes per record. A record count query took 16 seconds.
Comparative query times TimescaleDB and Clickhouse
Arne kindly translated a few sample postgreSQL queries into the SQL dialect used by
Clickhouse, running in a development environment, a container with 4 cores, 4 GB of memory
and a 40 GB SSD. His Grafana package is on a 1 core 2 GB memory, 20 GB SSD node. The
sections below provide the full detail, with a summary table at the end with execution time and
speed-up comparisons between TimescaleDB and Clickhouse and with two examples from
PySpark run by Greg Beam (section H).
a. Simple count of records for the month of September 2020
In Clickhouse syntax:
SELECT count(*) FROM rx
WHERE time >= toDateTime('2020-09-01 > 00:00:00')
AND time < toDateTime('2020-10-01 00:00:00');
count()

24 See Abadi, D.J., Boncz, P.A. and Harizopoulos, S., 2009. Column-oriented database systems.
Proceedings of the VLDB Endowment, 2(2), pp.1664-1665. Available at ir.cwi.nl/pub/14834/14834A.pdf
25 See https://en.wikipedia.org/wiki/List_of_column-oriented_DBMSes
26 See https://clickhouse.tech/docs/en/
27 See https://clickhouse.tech/docs/en/introduction/adopters/

Version 2.1 January 2021 Gwyn Griffiths gwyn@autonomousanalytics.com

 - 38 -

52659963
1 rows in set. Elapsed: 0.057 sec. Processed 52.66 million rows, 210.64 MB
(916.40 million rows/s., 3.67 GB/s.)

b. Count spots from the top 10 reporters during September 2020
In Clickhouse syntax:
SELECT "rx_sign", count(*) FROM rx
WHERE time >= toDateTime('2020-09-01 00:00:00')
AND time < toDateTime('2020-10-01 00:00:00')
GROUP BY "rx_sign" ORDER BY count(*) DESC LIMIT 10;
┌─rx_sign─┬─count()┐
│ EA8BFK │ 931910 │
│ OE9GHV │ 851741 │
│ IW2NKE │ 643998 │
│ DK6UG │ 629020 │
│ KD2OM │ 608895 │
│ DF4UE/P │ 606084 │
│ KA7OEI-1 │ 596519 │
│ LX1DQ │ 570622 │
│ WA2TP │ 556329 │
│ ON5KQ │ 538567 │

10 rows in set. Elapsed: 0.357 sec. Processed 52.66 million rows, 366.30 MB
(147.32 million rows/s., 1.02 GB/s.)
c. Inner Join on same table to compute average SNR difference between two reporters
There are reports28 that the speed-up enabled by Clickhouse is not as great where JOINs are
needed. The following TimescaleDB query syntax as used in several current (January 2021)
Grafana dashboards was sent to Arne:
SELECT
 avg(s1."dB"-s2."dB") as """dB difference"""
FROM spots s1
JOIN spots s2 on s1.wd_time = s2.wd_time
AND s1."CallSign" = s2."CallSign"
AND s1."Reporter" = 'G3ZIL' and s2."Reporter" = 'G4HZX'
AND s1.wd_band='40' and s2.wd_band='40'
WHERE s1.wd_time >= '2021-01-01T00:00:00Z' AND s1.wd_time < '2021-01-
19T00:00:00Z';
As written, executing on logs2.wsprdaemon.org, the execution time was 11.56 seconds. (The
number of coincident spots was 51119):
Timing: Generation 34.323 ms, Inlining 403.145 ms, Optimization 1791.962 ms,
Emission 1009.587 ms, Total 3239.017 ms
Execution Time: 11565.380 ms
Arne reported that, "Joining into the whole table takes forever so I tried to rewrite the query",
here, the JOIN is done on data extracted by two subqueries. In Clickhouse syntax and using
Arne's column names:
SELECT avg(snr1 - snr2) AS dbdiff
FROM
 (SELECT time, tx_sign, snr AS snr2
 FROM rx
 WHERE (time >= toDateTime('2021-01-01 00:00:00'))

28 e.g. see https://www.percona.com/blog/2017/06/22/clickhouse-general-analytical-workload-based-star-
schema-benchmark/

Version 2.1 January 2021 Gwyn Griffiths gwyn@autonomousanalytics.com

 - 39 -

 AND (time < toDateTime('2021-01-19 00:00:00'))
 AND (band = 7)
 AND (rx_sign = 'G4HZX')
) AS a
INNER JOIN
 (SELECT time, tx_sign, snr AS snr1
 FROM rx
 WHERE (time >= toDateTime('2021-01-01 00:00:00'))
 AND (time <toDateTime('2021-01-19 00:00:00'))
 AND (band = 7)
 AND (rx_sign ='G3ZIL')
) AS b USING (time, tx_sign)
The elapsed time was 0.214 seconds:
1 rows in set. Elapsed: 0.214 sec. Processed 38.85 million rows,
564.30 MB (181.14 million rows/s., 2.63 GB/s.)
Using this approach, but with TimescaleDB syntax:
SELECT avg(b."dB" - a."dB") AS dbdiff
FROM
 (SELECT wd_time, "CallSign", "dB" FROM spots
 WHERE wd_time >= '2021-01-01T00:00:00Z'
 AND wd_time < '2021-01-19T00:00:00Z'
 AND wd_band = '40'
 AND "Reporter" = 'G4HZX')
AS a
INNER JOIN
(SELECT wd_time, "CallSign", "dB" FROM spots
 WHERE wd_time >= '2021-01-01T00:00:00Z'
 AND wd_time < '2021-01-19T00:00:00Z'
 AND wd_band = '40'
 AND "Reporter" = 'G3ZIL')
AS b
ON (a.wd_time = b.wd_time AND a."CallSign" = b."CallSign");
Running on logs2.wsprdaemon.org resulted in a longer execution time of 13.15 seconds
Timing: Generation 30.984 ms, Inlining 384.783 ms, Optimization 1805.532 ms,
Emission 1027.633 ms, Total 3248.933 ms
Execution Time: 13151.362 ms
However, adding GROUP BY to this approach:
SELECT avg(b."dB" - a."dB") AS dbdiff
FROM
 (SELECT wd_time, "CallSign", "dB" FROM spots
 WHERE wd_time >= '2021-01-01T00:00:00Z'
 AND wd_time < '2021-01-19T00:00:00Z'
 AND wd_band = '40'
 AND "Reporter" = 'G4HZX' group by wd_time, "CallSign","dB")
AS a
INNER JOIN
(SELECT wd_time, "CallSign", "dB" FROM spots
 WHERE wd_time >= '2021-01-01T00:00:00Z'
 AND wd_time < '2021-01-19T00:00:00Z'
 AND wd_band = '40'
 AND "Reporter" = 'G3ZIL' group by wd_time, "CallSign","dB")
AS b
ON (a.wd_time = b.wd_time AND a."CallSign" = b."CallSign");
reduces the execution time to 3.78 seconds
Timing: Generation 36.009 ms, Inlining 677.129 ms, Optimization 2002.765 ms,
Emission 1187.458 ms, Total 3903.362 ms
Execution Time: 3778.078 ms

Version 2.1 January 2021 Gwyn Griffiths gwyn@autonomousanalytics.com

 - 40 -

Summary query times and speed-up factors for TimescaleDB, PySpark/Parquet and
Clickhouse
This is a crude comparison as the three databases were run on different machines, but for
interest:
 Execution times (s) Speed up re TimescaleDB
Task TimebaseDB PySpark Clickhouse PySpark Clickhouse
Count total records 2.21 0.9 0.057 2.5 39
Count top 10 Reporters 3.32 4.94 0.357 0.7 9
JOIN for SNR diffs 13.15 – 0.214 – 61
JOIN with GROUP BY 3.78 – –

Version 2.1 January 2021 Gwyn Griffiths gwyn@autonomousanalytics.com

 - 41 -

Annex J. Links to postgreSQL APIs or notes for other languages/systems
C#
http://zetcode.com/csharp/postgresql/
Haskell
https://hackage.haskell.org/package/postgrest
Kotlin
https://github.com/JetBrains/Exposed
Lua
https://keplerproject.github.io/luasql/manual.html
Spark
https://www.cdata.com/kb/tech/postgresql-jdbc-apache-spark.rst
Swift 5 or later
https://github.com/codewinsdotcom/PostgresClientKit

